
MEMICS 2008

Efficiently Representing Existential
Dependency Sets for

Expansion-based QBF Solvers

Florian Lonsing and Armin Biere1

Institute for Formal Models and Verification
Johannes Kepler University

Linz, Austria

Abstract

Given a quantified boolean formula (QBF) in prenex conjunctive normal form (PCNF), we consider the
problem of identifying variable dependencies. In related work, a formal definition of dependencies has been
suggested based on quantifier prefix reordering: two variables are independent if swapping them in the
prefix does not change satisfiability of the formula. Instead of the general case, we focus on the sets of
depending existential variables for all universal variables. This is relevant particularly for expansion-based
QBF solvers. We present an approach for efficiently computing existential dependency sets by means of a
directed connection relation over variables and demonstrate how this relation can be compactly represented
as a tree using a union-find data structure. Experimental results show the effectiveness of our approach.

Keywords: Quantified Boolean Formulae, QBF, expansion, dependencies.

1 Introduction

The logic of quantified boolean formulae (QBF) extends propositional logic (SAT)
with universal quantification. Whereas QBF is not more expressive than SAT,
relevant problems from model checking and verification [6,8,13,19] often can be
encoded more compactly in QBF than in SAT. In the domain of SAT, encouraging
progress has been made during the last years in the development of efficient decision
procedures based on the DPLL-framework [12]. The success is due to advanced
strategies for pruning the search space such as learning, backjumping or restarts.
These techniques were successfully extended to DPLL-based algorithms for QBF
[11,17,26] but, although still being important for performance, it turned out not to
guarantee similar progress as for SAT.

There is strong indication [4,14,15,18] that the quantifier prefix of QBFs in
prenex conjunctive normal form (PCNF) could be one reason for this phenomenon.

1 http://fmv.jku.at/

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

http://fmv.jku.at/

Lonsing and Biere

In QBF the presence of different types of quantifiers introduces dependencies be-
tween variables which have to be respected by QBF solvers. In many cases depen-
dencies resulting from linear quantifier prefixes are too pessimistic and have negative
influence on solver performance. In [23] a formal definition of dependencies has been
suggested and it was shown that the problem of identifying the optimal (smallest)
dependency set is, as the decision problem of QBF, PSPACE-complete [24]. Be-
cause of this fact a compromise has to be found between efficiency and optimality.
Various approaches have been suggested to identify dependencies and thus overcome
the drawback of linear quantifier prefixes [2,4,7,9,15,18,20,23]. To our knowledge all
of these approaches are based on analyzing the syntactic structure of a QBF.

Apart from search-based QBF solvers, which suffer from dependencies in ex-
ploring irrelevant parts of the search space, handling dependencies is crucial for
solvers based on variable elimination [2,5,7,10,20]. These solvers have to cope with
dependency-related size increase of the formula involved with eliminations.

In this paper we address the problem of computing dependency sets of univer-
sally quantified variables for QBFs in PCNF, which is relevant for expansion-based
QBF solvers [2,5,7,10,20]. Our work is based on [7,9]. We briefly introduce universal
expansion and analyze an algorithm suggested in [9] for computing dependencies
of universal variables. Starting from our analysis we develop a formal definition of
dependencies in the context of universal expansion. The definition is based on a
syntactic connection relation of variables. We obtain a directed dependency relation
by defining an equivalence relation over existential variables. This relation can be
represented as a tree excluding transitive edges. As experimental results demon-
strate, this relation allows efficient computation of dependency sets for all universal
variables in a QBF. As we do not consider dependencies of existential variables,
our approach can not directly be applied in search-based solvers, yet we see the
potential of extending our work to dependency sets for existential variables. 2

2 Preliminaries

For a set of variables V , a literal is either a variable x ∈ V or its negation ¬x where
v(x) = x and v(¬x) = x denotes the variable of a literal. A clause is a disjunction
over literals. A propositional formula is in conjunctive normal form (CNF) if it
consists of a conjunction over clauses.

A quantified boolean formula (QBF) F ≡ S1 . . . Sn φ in prenex conjunctive nor-
mal form (PCNF) consists of a propositional formula φ in CNF over a set of variables
V and a quantifier prefix S1 . . . Sn. The quantifier prefix is a linearly ordered set of
scopes Si, such that S1 < . . . < Sn, which forms a partition on the set of variables:
V = S1 ∪ . . . ∪ Sn and Si ∩ Sj = 6 0 for 1 ≤ i, j ≤ n and i 6= j.

A scope Si is existential if it is associated with an existential quantifier, written
as q(Si) = ∃ and universal otherwise where q(Si) = ∀. The set of existential
and universal variables is denoted by V∃ =

⋃
Si for q(Si) = ∃ and V∀ =

⋃
Si for

q(Si) = ∀, respectively. For a variable x ∈ Si, s(x) = Si is the scope of x and

2 In [21] we have in fact extended our approach. We obtained a compact graph representation for depen-
dencies of both existential and universal variables. This representation is also based on syntactic variable
connections [23].

2

Lonsing and Biere

q(x) = q(s(x)) the type of x. For two adjacent scopes Si and Si+1 where 1 ≤ i < n,
q(Si) 6= q(Si+1). Given a QBF with n scopes, there are n−1 quantifier alternations.

For some variable x, R(x) = {y ∈ V | δ(x) ≤ δ(y)}. That is, R(x) is the set of
all variables larger than x.

For a scope Si and literal l, δ(Si) = i and δ(l) = δ(s(v(l))) denote the level of
Si and of l, respectively. For scopes Si, Sj and literals l, k, Sj is larger than Si and
k is larger than l if δ(Si) < δ(Sj) and δ(l) < δ(k), respectively.

Let R ⊆ V ×V be a binary relation on the set of variables V . The reflexive and
transitive closure of R is the smallest reflexive and transitive R′ ⊆ V ×V such that
R ⊆ R′. The reflexive and transitive reduction of R is the smallest R′ ⊆ V ×V such
that R and R′ have the same reflexive and transitive closure.

In the following, QBFs in PCNF are considered such that for all clauses C =
(l1 ∨ . . . ∨ lk), v(li) 6= v(lj) and δ(li) ≤ δ(lj) for 1 ≤ i < j ≤ k and q(v(lk)) = ∃.
A clause neither contains multiple nor complementary literals of one and the same
variable, all literals are sorted ascendingly according to their level and the largest
literal is existential. Universal reduction [7,10] can be applied to remove literals
lk for which q(v(lk)) = ∀. Furthermore, we assume that there occurs at least one
literal for each x ∈ V in the formula.

3 Universal Expansion

Apart from solving QBF using DPLL-based algorithms where a semantic search
tree is implicitly constructed [11,12], resolution and expansion can be applied in
order to successively eliminate variables at the cost of formula size [2,5,7,10,20]. In
[9], cost-based expansion of universal variables was applied for preprocessing QBF,
which generalizes an approach first used in Quantor [7].

Basically, expanding a universal variable x ∈ V∀ involves copying a subformula,
assigning x and duplicating depending existential variables D(x) ⊆ (R(x) \ V∀).
For detailed information about expansion we refer to the aforementioned publica-
tions. In this work we focus on efficient computation and representation of D(x)
and |D(x)|, respectively. Duplicating variables is necessary in order to reflect the
possibility of a depending existential variable to assume different values with respect
to the value of the universal variable.

Example 3.1 In the satisfiable formula ∀x∃y (x∨¬y)∧ (¬x∨ y), y depends on x:
y must be assigned true if x = true and false otherwise. Incorrectly expanding x
without duplicating y yields ∃y (¬y)∧ (y), which is unsatisfiable. If y is duplicated,
then the resulting formula ∃y, y′ (¬y) ∧ (y′) is equisatisfiable.

A popular approach for computing set D(x) is based on rules for syntactically
pushing quantifiers from the prefix inside the formula, thus minimizing the sub-
formula within the range of a quantifier: (Qx φ ⊗ ψ) ≡ (Qx φ) ⊗ ψ if x 6∈ V (ψ),
⊗ ∈ {∨,∧} and Q ∈ {∀, ∃}. This method, also called miniscoping [2], has been ap-
plied in various contexts [2,4,7,9,15,20,23]. Informally, for some QBF and variable
x ∈ V∀, D(x) ⊆ (R(x) \ V∀) is the set of variables appearing to the right of x after
pushing quantifiers inside F as far as possible.

In [7] a connection relation of existential variables was defined in order to com-

3

Lonsing and Biere

i q(Si) Si (a2, e5, e9)

1 ∀ a1, a2 (e5, e9, e14)

2 ∃ e3, e4, e5 (e3, e8, e12)

3 ∀ a6, a7 (e4, a7, e10)

4 ∃ e8, e9, e10 (e4, e12, e13)

5 ∀ a11 (a1, a6, e8, e13)

6 ∃ e12, e13, e14 (a11, e12)

a1

e3

a2

e5e4

a6

e8 e10 e9

a7

a11

e13 e14e12

Fig. 1. QBF example. The table on the left shows the levels, quantifiers and variables for each scope in
the first three columns and clauses as lists of literals in the last column. Variables and literals are uniquely
identified by integers as in QDIMACS format [22]. The corresponding c-forest including sets H(x) (see
Sec. 4.1 and 4.2) is depicted on the right. Identifier prefixes “a” and “e” indicate variable types ∀ and ∃,
respectively.

pute D(x) for x ∈ Sn−1, which was generalized in [9] to arbitrary universal scopes:
two variables v and w are locally connected if they occur in a common clause. The
original definition [9] for computing D(x) where x ∈ V∀ is as follows:

D0(x) := {y ∈ (R(x) \ V∀) | x is locally connected to y}
Dk+1(x) := {z ∈ (R(x) \ V∀) | z is locally connected to y ∈ Dk

x}
D(x) :=

⋃
k

Dk
x

Let X = D(x) ∪ {x}. Set D(x) where x ∈ V∀ has the following properties:

(i) D(x) ⊆ (R(x) \ V∀)
(ii) For y ∈ D(x) : q(y) = ∃ and δ(x) < δ(y)

(iii) For y ∈ D(x) : x is connected to y via clauses containing variables in X

(iv) For y, z ∈ D(x) : y is connected to z via clauses containing variables in X

Essentially, D(x) contains existential variables which have larger levels than x only
and x is connected to all variables in D(x) via clauses containing variables from
D(x) ∪ {x}. This is also the case for all pairs of variables in D(x).

In an implementation directly applying the definition, set D(x) can be computed
by starting at clauses C such that x ∈ C, collecting existential variables y ∈ C where
δ(x) ≤ δ(y) and recursively inspecting clauses containing y. During this process,
the connection relation is implicitly constructed. This algorithm requires O(|F |)
time for one x ∈ V∀, where |F | is the length of the formula.

Example 3.2 For the QBF in Fig. 1, D(a1) = {e3, e4, e8, e10, e12, e13}, D(a2) =
{e5, e9, e14}, D(a6) = {e8, e12, e13}, D(a7) = {e10} and D(a11) = {e12, e13}.

4 Defining a Directed Dependency Relation

Based on the properties of set D(x), an approach for efficient computation and
representation of D(x) for all x ∈ V∀ is presented. The idea is to avoid computing a
connection relation for each universal variable from scratch. Instead, such a relation

4

Lonsing and Biere

is constructed once for all existential variables, which forms the basis for retrieving
sets D(x) and computing |D(x)|, respectively. For example, in expansion-based
QBF solvers this information could be used in variable selection heuristics. It is
shown how the connection relation can be compactly represented by defining an
equivalence relation on existential variables and by excluding transitive edges. In
the following, a formal definition is developed.

Definition 4.1 For a QBF, V∃,i = {y ∈ V∃ | i ≤ δ(y)}.

In Def. 4.1 V∃,i denotes the set of existential variables which are larger than or
equal to scope Si. We first introduce variable connections by clauses containing
common variables (definition adapted from [23]). This will be needed for proving
some of our results.

Definition 4.2 For x, y ∈ V and X ⊆ V , an X-path between x and y is a sequence
C1, . . . , Ck of clauses such that x ∈ C1, y ∈ Ck and Ci ∩Ci+1 ∩X 6= ∅ for 1 ≤ i < k.

Example 4.3 For the QBF in Fig. 1, there is an X-path between a1 and e3 for
X = {e12, e13} and clauses (a1, a6, e8, e13), (e4, e12, e13) and (e3, e8, e12).

Definition 4.4 For x, y ∈ V , y is locally depending on x with respect to scope Si,
written as x→i y, if, and only if q(y) = ∃, i ≤ δ(y) and there exists a clause C such
that both x ∈ C and y ∈ C. The reflexive and transitive closure of →i is denoted
by →∗i . If x→∗i y, then y is transitively locally depending on x.

The term “locally” refers to the fact that the relation is defined with respect to
some scope Si. There is a correspondence between →∗i and X-paths, which follows
from Def. 4.4 and Def. 4.2.

Corollary 4.5 For x, y ∈ V , if x →∗i y, then there is an X-path between x and y

for X = V∃,i.

Due to Def. 4.4 the converse of Cor. 4.5 does not hold in general. For example,
if there is an X-path between x ∈ V∃ and y ∈ V∀ then x 6→∗i y for all i. A weaker
variant can be stated as follows.

Corollary 4.6 For x ∈ V, y ∈ V∃, if there is an X-path between x and y for
X = V∃,i and i ≤ min(δ(x), δ(y)), then x→∗i y.

By Def. 4.4 connections with respect to a scope Sj are preserved for any smaller
scope Si as stated in the following corollary.

Corollary 4.7 For x, y ∈ V , i ≤ j: if x→∗j y, then also x→∗i y.

Example 4.8 For the QBF in Fig. 1, e3 →4 e8 but e3 6→5 e8, e8 →6 e12 and by
Cor. 4.7 also e8→1 e12, further e3→∗2 e13.

Definition 4.9 For x, y ∈ V∃, x is transitively locally connected to y with respect
to scope Si, written as x ∼i y, if, and only if q(x) = q(y) = ∃ and x→∗i y.

Actually, ∼i is a special case of →∗i by restricting the set of variables to V∃. For
proper values of i, ∼i is symmetric.

Lemma 4.10 For x, y ∈ V∃, i ≤ min(δ(x), δ(y)) : if x ∼i y then y ∼i x.

5

Lonsing and Biere

Proof. If x ∼i y for x, y ∈ V∃ and i ≤ min(δ(x), δ(y)), then by Def. 4.9 also x→∗i y.
By Cor. 4.5, there is an X-path between x and y for X = V∃,i and a sequence of
clauses C1, . . . , Ck. Then the reversed sequence of clauses Ck, . . . , C1 is an X-path
between y and x. Since x, y ∈ V∃ and i ≤ min(δ(x), δ(y)), by Cor. 4.6 also y →∗i x
and further y ∼i x by Def. 4.9. 2

Example 4.11 For the QBF in Fig. 1, e3 ∼2 e10 since q(e3) = q(e10) = ∃ and
e3→∗2 e10 via variables e12, e4 and e10.

Definition 4.12 For x, y ∈ V , x is globally connected to y, written as x ≈ y, if,
and only if either (1) x = y or (2) q(x) = q(y) = ∃, δ(x) = δ(y) = i and x ∼i y.

Relation ≈ is “global” because the definition is independent from a particular
scope. It follows from Def. 4.12 that for x, y ∈ V if x ≈ y then also s(x) = s(y) and
δ(x) = δ(y). We now prove that ≈ allows to merge existential variables from the
same scope into equivalence classes. This is an important step towards a compact
representation of dependencies.

Theorem 4.13 ≈ is an equivalence relation. For x ∈ V , [x] is the class of x.

Proof. Reflexivity is trivial since x ≈ x for x ∈ V by Def. 4.12. If not q(x) =
q(y) = ∃ then by Def. 4.12 x ≈ y if, and only if x = y. Since = is an equivalence
relation, symmetry and transitivity of ≈ follow immediately. Otherwise, assume
q(x) = q(y) = ∃. If x ≈ y and x = y, then also y ≈ x by Def. 4.12. If x ≈ y and
x 6= y then by Def. 4.12 x ∼i y for i = δ(x) = δ(y). Then by Lem. 4.10 and since
i = δ(x) = δ(y) also y ∼i x and hence y ≈ x. Therefore ≈ is symmetric. To show
transitivity, assume x ≈ y′ and y′ ≈ y for y′ ∈ V . If y′ ∈ V∀ then trivially x = y′ = y

by Def. 4.12 and hence also x ≈ y. Otherwise y′ ∈ V∃ and by Def. 4.12 and Def. 4.9
also x →∗i y′, y′ →∗i y for i = δ(x) = δ(y′) = δ(y) and q(x) = q(y′) = q(y) = ∃.
By x →∗i y′, y′ →∗i y and transitivity of →∗i , also x →∗i y, and further x ≈ y since
x ∼i y. 2

Example 4.14 For the QBF in Fig. 1, e3 ≈ e4 because q(e3) = q(e4) = ∃ and
δ(e3) = δ(e4) = 2 and e3 ∼2 e4 since e3 →∗2 e4 via variable e12. Furthermore,
e12 ≈ e13.

Lemma 4.15 Let x ∈ V, i = δ(x) and y ∈ [x]. Then x→∗i y.

Proof. If x ∈ V∀ and y ∈ [x] then trivially x = y because x ≈ y by Def. 4.12 and
also x →∗i x for i = δ(x) by reflexive closure of →i as in Def. 4.4. If x ∈ V∃ then
x ≈ y since y ∈ [x] and x ∼i y for i = δ(x) = δ(y) by Def. 4.12 and further x→∗i y
by Def. 4.9. 2

Theorem 4.16 Let x, y ∈ V, i ≤ min(δ(x), δ(y)). Then x →∗i y if, and only if
x′ →∗i y′ for all x′ ∈ [x], y′ ∈ [y].

Proof. The proof works regardless of the types of x and y by Def. 4.4 (reflexivity of
→∗i), Cor. 4.7 and Def. 4.12. Trivial cases arise for V∀. Assume x→∗i y for x, y ∈ V
and i ≤ min(δ(x), δ(y)). Then for x′ ∈ [x], y′ ∈ [y], x′ →∗i x and y →∗i y′ by Cor. 4.7
and Def. 4.12. Since x′ →∗i x, x →∗i y (by assumption), y →∗i y′, also x′ →∗i y′ by
transitivity of →∗i . The other direction can be shown analogously. 2

6

Lonsing and Biere

Lem. 4.15 and Thm. 4.16 state compatibility of →∗i with ≈: if two variables are
connected (dependent) then so are all members of their respective classes and vice
versa. When regarding [x] as an arbitrary class member, we may write, for example,
[x]→∗i [y] by Thm. 4.16. This notation denotes connections between classes. Note
that Thm. 4.16 would not hold for arbitrary values of i. For example, if δ(x) < i

then x 6→∗i x′ for x′ ∈ [x], which contradicts Def. 4.12.

Definition 4.17 ;∗ denotes the global directed dependency relation. For x, y ∈ V ,
[x] ;∗ [y] if, and only if, δ(x) ≤ δ(y) and x →∗i y for i = δ(x). The transitive
reduction of ;∗ is denoted by ;.

Lemma 4.18 For x, y ∈ V : if [x] ;∗ [y] and [x] 6= [y] then δ(x) < δ(y).

Proof. Assume [x] ;∗ [y], [x] 6= [y] but δ(x) ≥ δ(y). Then by Def. 4.17, δ(x) = δ(y)
and hence also q(x) = q(y). Since [x] ;∗ [y], also x →∗i y for i = δ(x) = δ(y) and
[x]→∗i [y] by Thm. 4.16 and hence [x] ≈ [y] by Def. 4.9 and Def. 4.12. Then [x] = [y]
which contradicts the assumption. 2

The proof of the following lemma works analogously to the one of Lem. 4.18.

Lemma 4.19 For x, y ∈ V : if [x] ;∗ [y] then either [x] = [y] or δ(x) < δ(y).

By Lem. 4.18 and Lem. 4.19, if [x] ;∗ [y] then either x and y are in the same
class or in different classes but from different scopes.

Theorem 4.20 For x ∈ V∀, i = δ(x) :
D(x) = {y ∈ V∃ | x→∗i y} = {y ∈ V∃ | [x]→∗i [y]} = {y ∈ V∃ | [x] ;∗ [y]}.

Proof. Assume x ∈ V∀ and i = δ(x).
D(x) = {y ∈ V∃ | x →∗i y} holds since D(x) as defined in Sec. 3 corresponds to

the transitive closure of →i in Def. 4.4.
To show {y ∈ V∃ | x→∗i y} ⊆ {y ∈ V∃ | [x]→∗i [y]} first assume x→∗i y, y ∈ V∃.

By Def. 4.12, x ≈ x and x = [x], hence [x] →∗i y and i ≤ δ(y) by Def. 4.4. In fact,
i < δ(y) because i 6= δ(y) since q(x) 6= q(y). For j = δ(y) = δ([y]), y →∗j [y] because
y ≈ [y]. By Cor. 4.7 and y →∗j [y], also y →∗i [y] since i < j. By transitivity of →∗i
as in Def. 4.4, [x] →∗i y and y →∗i [y], also [x] →∗i [y]. The other direction follows
right from Thm. 4.16, hence {y ∈ V∃ | x→∗i y} = {y ∈ V∃ | [x]→∗i [y]}.

To show {y ∈ V∃ | [x]→∗i [y]} ⊆ {y ∈ V∃ | [x] ;∗ [y]} first assume [x]→∗i [y], y ∈
V∃. Then i < δ([y]) since i ≤ δ([y]) by Def. 4.4 and i 6= δ([y]) because q(x) 6= q(y).
By Def. 4.12, δ(y) = δ([y]) and hence δ(x) < δ(y) where i = δ(x). If [x] →∗i [y] for
i = δ(x) then also x →∗i y and hence [x] ;∗ [y] by Def. 4.17 and δ(x) < δ(y). The
other direction follows from Def. 4.17, q(x) 6= q(y), δ(x) < δ(y), x→∗i y for i = δ(x)
and Thm. 4.16. Hence {y ∈ V∃ | [x]→∗i [y]} = {y ∈ V∃ | [x] ;∗ [y]}. 2

By Thm. 4.20, relations →∗i , →∗i combined with ≈ and ;∗ are equivalent in
theory for computing D(x). Note that computing D(x) by →∗i corresponds to
applying the original definition (see also Sec. 3) introduced in [9]. From a practical
point of view, →∗i is restricted to classes by ≈ which again can be improved with a
compact representation of ;.

7

Lonsing and Biere

4.1 Efficiently Representing Directed Dependency Relations

Applying relation ;∗ for dependency computation is most interesting for practical
application. Since ;∗ is directed, it restricts the set of classes to be considered
when connections of a variable are determined. This contributes to compactness
in addition to equivalence classes induced by ≈. In this section we first examine
properties of ;∗ over existential variables which allow to efficiently represent its
reflexive and transitive reduction ; as a tree. This tree can be shared between all
variables and is the basis for a graph data-structure representing dependencies of
universal variables.

The following lemma states a property of ;∗ which accounts for the tree struc-
ture of ;.

Lemma 4.21 Let x, y, z ∈ V∃ where δ(x) ≤ δ(y). If [x] ;∗ [z] and [y] ;∗ [z] then
[x] ;∗ [y].

Proof. Assume [x] ;∗ [z] and [y] ;∗ [z] for x, y, z ∈ V∃ where δ(x) ≤ δ(y). Then
by Def. 4.17, x →∗i z for i = δ(x) and y →∗j z for j = δ(y) and δ(x) ≤ δ(y) ≤ δ(z).
By Cor. 4.7 also y →∗i z and by Lem. 4.10 z →∗i y. By Def. 4.4, x→∗i z and z →∗i y,
also x→∗i y and [x] ;∗ [y]. 2

Corollary 4.22 For ;∗ on V∃, ; can be represented as a forest.

By Lem. 4.21, whenever [x] ;∗ [z] and [y] ;∗ [z] for δ(x) ≤ δ(y) then [x] ;∗ [y].
That is, there is always a transitive edge of the form [x] ;∗ [z] by [x] ;∗ [y] and
[y] ;∗ [z]. The transitive reduction ; of ;∗ removes [x] ;∗ [z] such that at most
one class is related to another one. Hence by Cor. 4.22 and due to the properties
of ;∗, in ; situations like in directed acyclic graphs can not occur. This allows ;

on existential variables to be represented as a forest. Note that since ;∗ is directed
by Def. 4.17 and hence also antisymmetric and acyclic, its transitive reduction ;

is unique [1].

Definition 4.23 The connection forest (c-forest) for a QBF with m existential
scopes is a collection of trees over V∃ with respect to ≈ with the following properties:

(i) For x, y ∈ V∃ : there is an edge ([x], [y]) if, and only if [x] ; [y].

(ii) For x, y ∈ V∃ : there is a path from [x] to [y] if, and only if [x] ;∗ [y].

(iii) the maximum length (number of edges) of a path is m− 1.

All paths in the c-forest consist of classes only, the levels of which are strictly
increasing by Lem. 4.18. Hence the maximum path length is m− 1.

4.2 Computing Dependencies by Directed Dependency Relations

Given a QBF in PCNF, the corresponding c-forest for V∃ is the basis for computing
D(x) for all x ∈ V∀.

Definition 4.24 For x ∈ V∀, y ∈ V∃ and the c-forest, let h(x, [y]) = [y′] such that
y′ ∈ V∃, [y′] ;∗ [y], δ(x) < δ(y′) and there is no y′′ ∈ V∃ with δ(x) < δ(y′′) < δ(y′)
and [y′′] ;∗ [y].

8

Lonsing and Biere

In the c-forest class h(x, [y]) denotes the smallest ancestor of [y] which is larger
than x, hence h(x, [y]) is minimal with respect to the scope ordering.

Definition 4.25 For a QBF F , x ∈ V∀ and the c-forest, the set of descendants
H∗(x) is defined as follows:

(i) C(x) := {C ∈ F | x ∈ C}
(ii) VC(x) := {[y] | y ∈ V∃,i, i = δ(x) and y ∈ C for C ∈ C(x)}
(iii) H(x) := {[z] | [z] = h(x, [y]) for [y] ∈ VC(x)}
(iv) H∗(x) := {[y] | [z] ;∗ [y] for [z] ∈ H(x)}

From clauses containing x, classes of existential variables larger than x are col-
lected in VC(x). Note that if [y] ∈ VC(x) then x →∗i y for i = δ(x). H(x) contains
smallest ancestors for classes in VC(x). H∗(x) comprises descendants of classes in
H(x) and represents all connections of x to existential variables larger than x.

Lemma 4.26 For x ∈ V∀, i = δ(x) : if [y] ∈ H∗(x) then x→∗i y.

Proof. Let [y] ∈ H∗(x) for x ∈ V∀. Then by Def. 4.25 [z] ;∗ [y] for [z] ∈ H(x)
where [z] = h(x, [y′]) for some [y′] ∈ VC(x). Then x→i y

′ for i = δ(x) by definition
of set VC(x) and also x →∗i [y′] by Thm. 4.16. By Def. 4.17 and since δ(x) < δ(y′)
also [x] ;∗ [y′]. Because [z] = h(x, [y′]) also [z] ;∗ [y′] by definition of function
h. By Def. 4.24 δ(x) < δ(z) and by [x] ;∗ [y′], [z] ;∗ [y′] and Lem. 4.21 also
[x] ;∗ [z]. By Def. 4.17, [x] ;∗ [z] and [z] ;∗ [y] also [x] ;∗ [y] and finally
x→∗i y. 2

For x ∈ V∀, the set of descendants H∗(x) in the c-forest exactly characterizes
connections of x to relevant (larger) existential variables. This is sufficient for
computing D(x) as stated in the following theorem.

Theorem 4.27 For x ∈ V∀ : D(x) = {y | y ∈ [z] for [z] ∈ H∗(x)}.

Proof. Assume x ∈ V∀. Direction ⊇ follows right from Lem. 4.26 and Thm. 4.20
since if y ∈ [z] for [z] ∈ H∗(x) then x →∗i y for i = δ(x) by Lem. 4.26 and further
y ∈ D(x) by Thm. 4.20.

To show ⊆, assume y ∈ D(x) and i = δ(x). Then by Thm. 4.20 x→∗i y and by
Cor. 4.5 there is an X-path P between x and y for X = V∃,i. Hence there are clauses
C1, . . . , Ck where x ∈ C1 and y ∈ Ck. Since P connects x and y, also x, y1 ∈ C1

for some y1 ∈ V∃,i with δ(x) < δ(y1). Such y1 always exists since by assumption
the largest literal in a clause is existential. Thus [y1] ∈ VC(x) and [z1] ∈ H(x) for
[z1] = h(x, [y1]). Then by Def. 4.24, [z1] ;∗ [y1]. P is also an X-path between y1

and y by C1, . . . , Ck, hence y1 →∗i y and δ(x) < δ(y1), δ(x) < δ(y). Let w denote
the smallest connecting variable in P between y1, y: m = δ(w) = min({δ(v) | v ∈
Ci ∩ Ci+1 ∩ X, 1 ≤ i < k}). Since m is minimal, also y1 →∗m w, w →∗m y and by
Lem. 4.10 w →∗m y1. By Def. 4.17 and since m = δ(w), also [w] ;∗ [y1], [w] ;∗ [y].
By Lem. 4.21, [z1] ;∗ [y1] and [w] ;∗ [y1], also [z1] ;∗ [w]. Then by [z1] ;∗ [w],
[w] ;∗ [y] and transitivity also [z1] ;∗ [y], hence [y] ∈ H∗(x) because [z1] ∈ H(x).2

By Thm 4.27 and Def. 4.25 members of classes in H∗(x) exactly correspond to
D(x). Computing D(x) from a c-forest therefore does not require searching since

9

Lonsing and Biere

subtrees rooted at classes in H(x) denote subsets of D(x). Thus the c-forest, which
is computed once and then shared between all x ∈ V∀, combined with sets H(x) is
sufficient to identify and compactly represent D(x).

Example 4.28 Fig. 1 shows a c-forest (dotted edges) and sets H(x) (solid
edges). Variables e3, e4 and e12, e13 are in one class, respectively (horizontal
edges). According to Def. 4.25, C(a1) = C(a6) = {(a1, a6, e8, e13)}, VC(a1) =
VC(a6) = {[e8], [e13]}, H(a1) = {[e3]}, H∗(a1) = {[e3], [e8], [e10], [e13]}, H(a6) =
{[e8]}, H∗(a6) = {[e8], [e13]}, D(a1) = {e3, e4, e8, e10, e12, e13} and D(a6) =
{e8, e12, e13}. Note that the path from [e8] to [e13] is shared between variables
a1 and a6.

5 Experimental Results

We have implemented a tool which, given a QBF in PCNF, builds the c-forest and
determines sets H(x) for all x ∈ V∀ incrementally. Clauses are inspected exactly
once one after another: a pair of variables x, y ∈ C for some clause C where x ∈ V∀,
y ∈ V∃ and δ(x) < δ(y) results in an update of H(x) by adding h(x, [y]). If x, y ∈ V∃
and δ(x) ≤ δ(y) then the c-forest is updated by inserting an edge for [x] ;∗ [y].
Relation ≈ is computed using an efficient union-find algorithm [25]. Tab. 1 shows
experimental results on structured formulae from QBF competitions [16]. 3

The first line shows the number of formulae per set. Run times are in seconds
for the whole set and on average per formula. Maximum and average sizes of sets
H∗(x) and D(x) for x ∈ V∀ are reported (see also Sec. 4.2). |H∗(x)|

|D(x)| for x ∈ V∀
relates the sizes of the two representations of D(x): the c-forest is compared to
the directly computed set by →∗i . The worst-case value is 100%, which means no
improvement can be achieved by the c-forest. On the contrary, the average of |H

∗(x)|
|D(x)|

over all x ∈ V∀ indicates that the c-forest representing ; allows to represent D(x)
more compactly than →∗i . This observation is supported by the maximum and
average values of |H∗(x)| and |D(x)|. The last line reports the ratio between the
total number of equivalence classes and the total number of existential variables per
formula set, where the worst-case value is 100%: one class per variable. The values
indicate that there are few, yet large classes which demonstrates the compacting
effect of relation ≈.

6 Conclusion

We have presented an efficient way to compute and represent dependency sets for all
universal variables in QBFs, which is relevant for expansion-based QBF solvers. As
previous work, our approach relies on a syntactic connection relation of variables.
By defining an equivalence relation on existential variables and excluding transitive
edges, we obtain a directed connection relation which can be implemented using
a tree and a union-find data structure. This relation can be shared between all
universal variables. Experiments show that dependencies can be compactly repre-
sented with our approach. We are planning to extend this method to dependency

3 Setup: 64-bit Ubuntu Linux 8.04, Intel Q6700 at 2.66 GHz, 8 GB of memory.

10

Lonsing and Biere

2005 2006 2007 2008

size 211 216 1136 3328

total time 7.46 1.29 195.75 267.49

avg. time 0.04 0.01 0.17 0.08

max. |H∗(x)| 797 5 797 1872

avg. |H∗(x)| 19.51 1.21 39.07 8.24

max. |D(x)| 256535 9993 2177280 2177280

avg. |D(x)| 82055.87 4794.60 33447.6 19807

avg. |H
∗(x)|
|D(x)| 3.44 % 0.04 % 6.42 % 1.21 %

≈∃ 3.08 % 3.95 % 2.20 % 7.37 %

Table 1
Experimental results on structured formulae from QBF competitions 2005 to 2008 [16]. Columns labelled
2005 to 2008 denote formulae sets from QBFEVAL competitions of the respective year. See section 5 for

comments.

sets for existential variables for use in search-based QBF solvers. Furthermore, our
representation can be regarded as static, that is, the effect of removing clauses from
the formula has not yet been taken into consideration. Certainly, a dynamic version
will be more flexible when used in combination with variable expansion.

References

[1] Aho, A. V., M. R. Garey and J. D. Ullman, The Transitive Reduction of a Directed Graph, SIAM J.
Comput. 1 (1972), pp. 131–137.

[2] Ayari, A. and D. A. Basin, QUBOS: Deciding Quantified Boolean Logic Using Propositional
Satisfiability Solvers, in: M. Aagaard and J. W. O’Leary, editors, FMCAD, Lecture Notes in Computer
Science 2517 (2002), pp. 187–201.

[3] Bacchus, F. and T. Walsh, editors, “Theory and Applications of Satisfiability Testing, 8th International
Conference, SAT 2005, St. Andrews, UK, June 19-23, 2005, Proceedings,” Lecture Notes in Computer
Science 3569, Springer, 2005.

[4] Benedetti, M., Quantifier Trees for QBFs, in: Bacchus and Walsh [3], pp. 378–385.

[5] Benedetti, M., sKizzo: A Suite to Evaluate and Certify QBFs, in: R. Nieuwenhuis, editor, CADE,
Lecture Notes in Computer Science 3632 (2005), pp. 369–376.

[6] Benedetti, M. and H. Mangassarian, QBF-Based Formal Verification: Experience and Perspectives,
JSAT 5 (2008), pp. 133–191.

[7] Biere, A., Resolve and Expand, in: H. H. Hoos and D. G. Mitchell, editors, SAT (Selected Papers),
Lecture Notes in Computer Science 3542 (2004), pp. 59–70.

[8] Biere, A., A. Cimatti, E. M. Clarke and Y. Zhu, Symbolic Model Checking without BDDs, in:
R. Cleaveland, editor, TACAS, Lecture Notes in Computer Science 1579 (1999), pp. 193–207.

[9] Bubeck, U. and H. K. Büning, Bounded Universal Expansion for Preprocessing QBF, in: J. Marques-
Silva and K. A. Sakallah, editors, SAT, Lecture Notes in Computer Science 4501 (2007), pp. 244–257.

[10] Büning, H. K., M. Karpinski and A. Flögel, Resolution for Quantified Boolean Formulas, Inf. Comput.
117 (1995), pp. 12–18.

11

Lonsing and Biere

[11] Cadoli, M., A. Giovanardi and M. Schaerf, An Algorithm to Evaluate Quantified Boolean Formulae,
in: AAAI/IAAI, 1998, pp. 262–267.

[12] Davis, M., G. Logemann and D. Loveland, A Machine Program for Theorem-proving, Commun. ACM
5 (1962), pp. 394–397.

[13] Dershowitz, N., Z. Hanna and J. Katz, Bounded Model Checking with QBF, in: Bacchus and Walsh [3],
pp. 408–414.

[14] Egly, U., M. Seidl, H. Tompits, S. Woltran and M. Zolda, Comparing Different Prenexing Strategies
for Quantified Boolean Formulas, in: E. Giunchiglia and A. Tacchella, editors, SAT, Lecture Notes in
Computer Science 2919 (2003), pp. 214–228.

[15] Egly, U., H. Tompits and S. Woltran, On Quantifier Shifting for Quantified Boolean Formulas, in:
Proc. SAT’02 Workshop on Theory and Applications on QBFs, 2002, pp. 48–61.

[16] Giunchiglia, E., M. Narizzano and A. Tacchella, QBF Solver Evaluation Portal (2001), http://www.
qbflib.org/index_eval.php.

[17] Giunchiglia, E., M. Narizzano and A. Tacchella, Backjumping for Quantified Boolean Logic satisfiability,
Artif. Intell. 145 (2003), pp. 99–120.

[18] Giunchiglia, E., M. Narizzano and A. Tacchella, Quantifier Structure in Search-Based Procedures for
QBFs, IEEE Trans. on CAD of Integrated Circuits and Systems 26 (2007), pp. 497–507.

[19] Jussila, T. and A. Biere, Compressing BMC Encodings with QBF, ENTCS 174 (2007), pp. 45–56.

[20] Lonsing, F. and A. Biere, Nenofex: Expanding NNF for QBF Solving, in: H. K. Büning and X. Zhao,
editors, SAT, Lecture Notes in Computer Science 4996 (2008), pp. 196–210.

[21] Lonsing, F. and A. Biere, A Compact Representation for Syntactic Dependencies in QBFs, in:
O. Kullmann, editor, SAT, Lecture Notes in Computer Science 5584 (2009), pp. 398–411.

[22] QBFLIB, QDIMACS Standard v1.1, http://www.qbflib.org/qdimacs.html.

[23] Samer, M. and S. Szeider, Backdoor Sets of Quantified Boolean Formulas, Journal of Automated
Reasoning (JAR) 42 (2009), pp. 77–97.

[24] Stockmeyer, L. J. and A. R. Meyer, Word Problems Requiring Exponential Time: Preliminary Report,
in: STOC (1973), pp. 1–9.

[25] Tarjan, R. E., Efficiency of a Good But Not Linear Set Union Algorithm, J. ACM 22 (1975), pp. 215–
225.

[26] Zhang, L. and S. Malik, Conflict driven learning in a quantified Boolean Satisfiability solver, in: L. T.
Pileggi and A. Kuehlmann, editors, ICCAD (2002), pp. 442–449.

12

http://www.qbflib.org/index_eval.php
http://www.qbflib.org/index_eval.php
http://www.qbflib.org/qdimacs.html

	Introduction
	Preliminaries
	Universal Expansion
	Defining a Directed Dependency Relation
	Efficiently Representing Directed Dependency Relations
	Computing Dependencies by Directed Dependency Relations

	Experimental Results
	Conclusion
	References

