A Compact Representation for Syntactic Dependencies in QBFs

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification (FMV)
Johannes Kepler University, Linz, Austria
florian.lonsing@jku.at
http://fmv.jku.at

SAT'09 June 30 - July 3, 2009 Swansea, Wales, United Kingdom

Overview

QBF: Quantified Boolean Formulae.

QDPLL: DPLL-like QBF solvers, formulae in prenex CNF.

• decision order must respect "quantification order".

Example (Dependencies in QBF)

 $\forall x \exists y. (x \lor \neg y) \land (\neg x \lor y)$ is satisfiable. Value of y depends on value of x. \rightarrow erroneously conclude unsatisfiability if y is assigned before x.

Our Results:

- given: syntactic dependency relation D.
- static and compact dependency graph (DAG) representing D.
- graph is applicable to QBF solvers of any kind.
- in QDPLL: find assignable variables before decision-making.
- experiments: structured formulae from QBFEVAL 2005 2008.

Preliminaries

QBFs in Prenex CNF: $S_1 \dots S_n$. ϕ

- ϕ in CNF and quantifier-free, quantified variables $V = V_{\exists} \cup V_{\forall}$.
- scopes $S_1 < \ldots < S_n$, ordered by nesting $\delta(S_i) = i$, type $q(S_i) \in \{ \forall, \exists \}$.

Dependency Schemes [SamerSzeider-JAR'09]:

- relation $D \subseteq (V_{\exists} \times V_{\forall}) \cup (V_{\forall} \times V_{\exists})$.
- $y \in D(x)$: "y depends on x", i.e. assign x before y in QDPLL.
- $|D_1| < |D_2|$: D_1 less restrictive, i.e. more freedom for decisions in QDPLL.

Example (Trivial Dependency Scheme)

$$D^{\text{triv}}$$
: $y \in D^{\text{triv}}(x) \Leftrightarrow \delta(x) < \delta(y)$ and $q(x) \neq q(y)$.

Standard Dependency Scheme Dstd [SamerSzeider-JAR'09]

Definition (X-path)

For $x, y \in V$, $X \subseteq V$, an X-path between x and y is a sequence C_1, \ldots, C_k of clauses where $x \in C_1$, $y \in C_k$ and $C_i \cap C_{i+1} \cap X \neq \emptyset$ for $1 \leq i < k$.

- For $x \in V$: if $q(x) = \exists$ then $\overline{q(x)} := \forall$ and $\overline{q(x)} := \exists$ otherwise.
- For a QBF and $q \in \{\exists, \forall\}$: $V_{q,i} := \{y \in V_q \mid i \leq \delta(y)\}$.

Definition (Standard Dependency Scheme)

For $x \in V$, $i = \delta(x) + 1$: $D^{\text{std}}(x) = \{y \in V_{\overline{q(x)},i} \mid \text{there is an } X\text{-path between } x \text{ and } y \text{ for } X = V_{\exists,i}\}.$

- $D^{\text{std}}(x)$ contains all differently quantified, *larger y* which are connected to x over *existential* variables *larger* than x.
- Observe: $|D^{std}| < |D^{triv}|$.

Goal: A Compact Graph for D^{std}

In Practice: computing *full D*^{std} in $O(|V|.|\phi|)$ time.

- traversing clauses in ϕ for each $x \in V$.
- too expensive to be done dynamically at decision points within QDPLL.

Our Work:

- static and compact graph representation (DAG) for D^{std}.
- graph is built once, serves as over-approximation for exact D^{std}.
- classes of variables represent connection information.
- connection information is shared between variables.

Towards a Graph Representation: Connections

Definition (Variable Connection)

For $x, y \in V$, x is connected to y wrt. scope S_i $(x \to_i y)$ iff. $y \in V_{\exists}$, $i \le \delta(y)$ and $x, y \in C$ for $C \in \phi$. Relation \to_i^* is the refl. trans. closure of \to_i .

Example (ongoing)

i	$q(S_i)$	S_i	(a2, e5, e9)		
1	A	a1, a2	(e5, e9, e15)		
2	3	e3, e4, e5	(e3, e8, e13)		
3	A	a6, a7	(e4, a7, e10)		
4	3	e8, e9, e10	(e4, e13, e14)		
5	A	a11, a12	(a1, a6, e8, e14)		
6	3	e13, e14, e15	(a11, a12, e13)		

- trans. edges not shown.
- e3 \rightarrow 4 e8 but e3 $\not\rightarrow$ 5 e8.
- e3 \to_2^* e14 and also e14 \to_2^* e3.

From Connections to Classes

Definition (Equivalence)

For $x, y \in V$, x is equivalent to y ($x \approx y$) iff. either (1) x = y or (2) $q(x) = q(y) = \exists$, $\delta(x) = \delta(y) = i$ and $x \to_i^* y$.

Example (continued)

- e3 \approx e4 since $q(e3) = q(e4) = \exists$, $\delta(e3) = \delta(e4) = 2$ and e3 \rightarrow_2^* e4.
- e5 ≈ e4 because e5 →₂* e4.
- trivially a11 \approx a11 and e3 \approx e14.
- \rightarrow_i^* on \approx potentially more compact.
- $[x] \rightarrow_i^* [y]$: connection between classes.

Representing Class Connections: Theory

Goal: compact representation of *all* existential class connections for D^{std} .

Problem: with \rightarrow_i^* on \approx still need to search for connected classes.

Definition (Directed Connection)

For $x \in V$, $y \in V_{\exists}$, $[x] \leadsto^* [y]$ iff. $\delta(x) \le \delta(y)$ and $x \to_i^* y$ for $i = \delta(x)$. Relation \leadsto is the refl. trans. reduction of \leadsto^* .

• $[x] \leadsto^* [y]$ respects scope ordering, excludes variables smaller than x.

Lemma (Connection Forest, C-Forest)

For V_{\exists} , \rightsquigarrow can be represented as a forest.

C-Forest: compact representation of all existential connections.

• no more searching: classes are connected to all of their descendants.

Representing Class Connections: Example

Example (continued)

Right figure:

- \rightsquigarrow on V_{\exists} : c-forest.
- [e3] → [e8]
- [e8] → [e14]
- [e3] →* [e14]
- also [e4] →* [e14]
 since [e4] = [e3]

Practical Problem: how to find connected descendants of \boldsymbol{x} in c-forest?

Essentially: need set of "root classes" for each $x \in V$.

- descendants of root classes exactly represent all connections of x.
- computing D^{std}: c-forest + root classes.

Root Classes and Descendants

Finding Root Classes: finding smallest ancestors in c-forest.

Definition (Smallest Ancestor)

For $y \in V_{\exists}$, $i \le \delta(y)$ and the c-forest, h(i, [y]) = [y'] denotes the smallest ancestor of [y] in the c-forest such that $i \le \delta(y')$.

Definition (Root Classes)

For $x \in V$, $H_i(x) := \{[z] \mid [z] = h(i, [y]) \text{ for } [y] \text{ where } x \to_i y\}$ is the set of root classes of x with respect to scope S_i .

• Finding root classes $H_i(x)$ starting from clauses containing x.

Definition (Root Class Descendants)

For $x \in V$, $H_i^*(x) := \{[y] \mid [z] \leadsto^* [y] \text{ for } [z] \in H_i(x)\}$ is the set of root class descendants of x with respect to scope S_i .

Sets H_i^{*} are sufficient for computing D^{std} from c-forest.

Completing the Dependency Graph

Theorem (D^{std} by Checking Root Class Decendants)

For
$$x \in V$$
, $i = \delta(x) + 1$:
 $D^{\text{std}}(x) = \{ y \in V_{\overline{q(x)},i} \mid H_i^*(x) \cap H_j^*(y) \neq \emptyset \text{ for } j = \delta(y) \}.$

Example (continued)

- left figure: blue edges \rightarrow as sets $H_i(x)$ for $i = \delta(x) + 1, x \in V$.
- right figure: D^{std} graph
- implicitly:

 $e15 \in D^{std}(a2)$

e13 $\in D^{\text{std}}(a1)$

 $e13 \in D^{std}(a11)$

Graph for D^{std}: c-forest as core

- already present: for $x \in V_{\forall}$, $i = \delta(x) + 1$: $D^{\text{std}}(x) = H_i^*(x)$
- for $x \in V_{\exists}$: insert edges to represent $D^{\text{std}}(x)$

Experimental Results

	QBFEVAL'05	QBFEVAL'06	QBFEVAL'07	QBFEVAL'08
size	211	216	1136	3328
total time	7.94	1.35	227.05	300.31
max. time	0.58	0.03	7.96	8.11
avg. time	0.04	0.01	0.2	0.09
$x \in V_{\forall}$				
$max. D^{std}(x) $	256535	9993	2177280	2177280
avg. $ D^{\text{std}}(x) $	82055.87	4794.60	33447.6	19807
$max. H_i(x) $	256	1	518	518
avg. $ H_i(x) $	3.26	0.98	2.02	1.14
$max. H_i^*(x) $	797	5	797	1872
avg. $ H_i^*(x) $	19.51	1.12	39.06	8.24
avg. $\frac{ \{[y] \in D^{\text{std}}(x)\} }{ \{y \in D^{\text{std}}(x)\} }$	3.44%	0.04%	6.42%	1.21%
$x \in V_{\exists}$				
$max. D^{std}(x) $	5040	440	5040	22696
avg. $ D^{\text{std}}(x) $	12.76	2.98	3.24	4
$max. H_i(x) $	24	7	490	490
avg. $ H_i(x) $	0.14	0.13	0.17	0.13
max. $ H_i^*(x) $	797	7	797	1872
avg. $ H_i^*(x) $	5.16	0.16	1.32	1.31
avg. $\frac{ \{[y] \in D^{\text{std}}(x)\} }{ \{y \in D^{\text{std}}(x)\} }$	2.37%	0.4%	2.76%	2.09%
classes per variables	10.96%	4.99%	11.45%	7.11%

Summary

QDPLL for QBF: quantification order matters.

limited freedom for decisions.

Dependency Schemes:

- dependency relations $D \subseteq (V_{\exists} \times V_{\forall}) \cup (V_{\forall} \times V_{\exists})$.
- $y \in D(x)$: assign x before y in QDPLL.
- Standard Dependency Scheme *D*^{std}: based on variable connections.

Achievements: static, compact graph representation D^{std} for QBF in PCNF.

- compactness: connection relation on equivalence classes.
- c-forest: sharing connection information.
- two orders of magnitude more compact than simple graph.

Ongoing and Future Work:

- integration into QDPLL: maintaing top-down "decision frontier".
- comparing dependency schemes in QDPLL.

[Appendix] Mini-scoping is non-deterministic

Example

$$\exists a, b \forall x, y \exists c, d. (a \lor x \lor c) \land (a \lor b) \land (b \lor d) \land (y \lor d)$$

After minimizing $\exists c, \exists d, \forall x \text{ and } \forall y, \textit{non-deterministic}$ choice:

1. minimize $\exists b$ before $\exists a$

Extract *D*^{tree} from parse tree (descendants):

1.
$$D^{\text{tree}} = \{(a, x), (x, c), (a, y), (b, y), (y, d)\}$$

2. minimize $\exists a$ before $\exists b$

2.
$$D^{\text{tree}} = \{ (b, x), (a, x), (x, c), (b, y), (y, d) \}$$

[Appendix] D^{std} less restrictive than D^{tree}

[Appendix] Dependency Computation

Theorem

For
$$x \in V$$
, $i = \delta(x) + 1$:

$$D^{\text{std}}(x) = \{ y \in V_{\overline{q(x)},i} \mid \exists w \in V_{\exists,i} : x \to_i^* w \text{ and } y \to_i^* w \}$$

$$= \{ y \in V_{\overline{q(x)},i} \mid \exists w \in V_{\exists,i} : x \to_i^* [w] \text{ and } [y] \to_i^* [w] \}$$

$$= \{ y \in V_{\overline{q(x)},i} \mid \exists w \in V_{\exists,i} : x \to_i^* [w] \text{ and } [y] \to_i^* [w] \}$$

$$= \{ y \in V_{\overline{q(x)},i} \mid \exists w \in V_{\exists,i} : x \to_i^* [w] \text{ and } [y] \to_i^* [w] \}$$

$$(3)$$

[Appendix] Root Classes: Example

Example (continued)

Blue edges \rightarrow : sets $H_i(x)$ for $i = \delta(x) + 1$, $x \in V$.

i	$q(S_i)$	S_i	
1	A	a1, a2	
2	3	e3, e4, e5	
3	A	a6, a7	
4	3	e8, e9, e10	
5	A	a11, a12	
6 ∃		e13, e14, e15	

(a2, e5, e9) (e5, e9, e15) (e3, e8, e13) (e4, a7, e10) (e4, e13, e14) (a1, a6, e8, e14) (a11, a12, e13)

[Appendix] Completing the Dependency Graph

Theorem (D^{std} by Checking Root Class Decendants)

For
$$x \in V$$
, $i = \delta(x) + 1$:
 $D^{\text{std}}(x) = \{ y \in V_{\overline{q(x)},i} \mid H_i^*(x) \cap H_j^*(y) \neq \emptyset \text{ for } j = \delta(y) \}.$

Example (continued)

- right figure: D^{std} graph
- implicitly: $e15 \in D^{std}(a2)$ $e13 \in D^{std}(a1)$
 - e13 $\in D^{\text{std}}(a11)$

Graph for D^{std} :

- already present: for $x \in V_{\forall}$, $i = \delta(x) + 1$: $D^{\text{std}}(x) = H_i^*(x)$
- for $x \in V_{\exists}$: insert (non-transitive) edges to represent $D^{\text{std}}(x)$

[Appendix] Completing the Dependency Graph

Theorem (D^{std} by Checking Root Class Decendants)

$$\begin{aligned} & \textit{For } x \in \textit{V}, i = \delta(x) + 1: \\ & \textit{D}^{\textit{std}}(x) = \{ y \in \textit{V}_{\overline{q(x)},i} \mid \textit{H}_{i}^{*}(x) \cap \textit{H}_{j}^{*}(y) \neq \emptyset \textit{ for } j = \delta(y) \}. \end{aligned}$$

Example (continued)

- right figure: Dstd graph
- implicitly:

$$e15 \in D^{std}(a2)$$

$$e13 \in D^{std}(a1)$$

e13
$$\in D^{\text{std}}(a11)$$

a11
$$\in D^{\text{std}}(e8)$$

Optimization: merging universal classes [a11], [a12] with same H_i .

Graph for D^{std} :

- already present: for $x \in V_{\forall}$, $i = \delta(x) + 1$: $D^{\text{std}}(x) = H_i^*(x)$
- for $x \in V_{\exists}$: insert (non-transitive) edges to represent $D^{\text{std}}(x)$

[Appendix] Experimental Results

	QBFEVAL'05	QBFEVAL'06	QBFEVAL'07	QBFEVAL'08
size	211	216	1136	3328
total time	7.94	1.35	227.05	300.31
max. time	0.58	0.03	7.96	8.11
avg. time	0.04	0.01	0.2	0.09
$x \in V_{\forall}$				
$max. D^{std}(x) $	256535	9993	2177280	2177280
avg. $ D^{\text{std}}(x) $	82055.87	4794.60	33447.6	19807
$max. H_i(x) $	256	1	518	518
avg. $ H_i(x) $	3.26	0.98	2.02	1.14
max. $ H_i^*(x) $	797	5	797	1872
avg. $ H_i^*(x) $	19.51	1.12	39.06	8.24
avg. $\frac{ \{[y] \in D^{\text{std}}(x)\} }{ \{y \in D^{\text{std}}(x)\} }$	3.44%	0.04%	6.42%	1.21%
classes per variables	28.2%	10.23%	40.31%	21.29%
$x \in V_{\exists}$				
$max. D^{std}(x) $	5040	440	5040	22696
avg. $ D^{\text{std}}(x) $	12.76	2.98	3.24	4
$max. H_i(x) $	24	7	490	490
avg. $ H_i(x) $	0.14	0.13	0.17	0.13
$max. H_i^*(x) $	797	7	797	1872
avg. $ H_i^*(x) $	5.16	0.16	1.32	1.31
avg. $\frac{ \{[y] \in D^{\text{std}}(x)\} }{ \{y \in D^{\text{std}}(x)\} }$	2.37%	0.4%	2.76%	2.09%
classes per variables	10.96%	4.99%	11.45%	7.11%